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ABSTRACT
�is study investigated pa�erns in the development of computa-
tional thinking and programming expertise in the context of the
Exploring Computer Science (ECS) program, a high school intro-
ductory CS course and professional development program designed
to foster deep engagement through equitable inquiry around CS
concepts. Prior research on programming expertise has identi�ed
three general areas of development — program comprehension,
program planning, and program generation. �e pedagogical prac-
tices in ECS are consistent with problem solving approaches that
support the development of programming expertise. �e study
took place in a large urban district during the 2016–17 school year
with 28 ECS teachers and 1,931 students. A validated external as-
sessment was used to measure the development of programming
expertise. �e results indicate that there were medium-sized, statis-
tically signi�cant increases from pretest to pos�est, and there were
no statistically signi�cant di�erences by gender or race/ethnicity.
A�er controlling for prior academic achievement, performance in
the ECS course correlated with performance on the pos�est. With
respect to speci�c programming concepts, the results also provide
evidence on the progression of the development of programming
expertise. Students seem to develop comprehension and planning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5890-3/19/02. . .$15.00
DOI: 10.1145/3287324.3287415

expertise prior to expertise in program generation. In addition,
students seem to develop expertise with concrete tasks prior to
abstract tasks.
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1 INTRODUCTION
“Our economy is rapidly shi�ing, and both educators and business
leaders are increasingly recognizing that computer science (CS) is
a ‘new basic’ skill necessary for economic opportunity and social
mobility.” — White House Blog [24]

With President Obama’s announcement of the Computer Science
For All Initiative in 2016, there has been a surge in the number of
districts that are planning for or newly implementing computer
science (CS) o�erings at their schools. Since the dawn of the modern,
standards-based era [19], this is the �rst time that a new subject area
is gaining prominence as a core subject. As seen in the White House
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blog entry, much of the rhetoric around the Computer Science for
All initiative has focused on broadening participation by increasing
the number of women and minorities who pursue computer science
as a career. Broadening participation is an important focus given the
dismal levels of participation of women and minorities in computer
science. However, without a�ending to the structural barriers to
participation [14], programs that propagate traditional approaches
to CS education are unlikely to contribute to the goal of broadening
participation.

In a review of computing research, Sheard and colleagues [23]
identi�ed a variety of strategies with empirical support on their
e�ectiveness at improving computing outcomes. In particular,
they highlight the explicit teaching of planning strategies, pair
programming, and collaborative learning. In addition, Robins and
colleagues [22] summarize empirical support that a problem solving
approach is an e�ective means to develop programming expertise.
On the other hand, Robins and colleagues have also documented
that despite this evidence, some CS educators believe that such
problem-solving, collaborative approaches to CS can ‘dumb down’
the curriculum.

Pears and colleagues [20] make a plea for more large-scale, sys-
tematic research that examines the relationship between teaching
techniques and student outcomes. In order to support generaliza-
tions across initiatives, it is important for researchers to be explicit
about the pedagogical techniques being used and to use a common
framework for characterizing student outcomes. In this study, we
examine two research questions related to the correlation between
a particular problem-solving approach to teaching high school com-
puter science and the development of programming expertise. (a)
To what extent does student performance in the Exploring Com-
puter Science course correlate with performance on the end of
course exam? (b) Which aspects of programming expertise are
the most di�cult for students to develop? In the next section, we
discuss a prominent high school computer science curriculum that
explicitly incorporates the aforementioned empirically supported
pedagogies.

1.1 Exploring Computer Science
�e Exploring Computer Science (ECS) curriculum and professional
development program was developed at the University of Califor-
nia, Los Angeles and the University of Oregon, with the goal of
contributing to broadened participation of women and minorities
and increased equity in the �eld of computer science [14]. Speci�-
cally, the ECS curriculum seeks to accomplish this goal of broad-
ening participation by introducing the �eld of computer science
and computational practices in a way that makes the �eld relevant,
engaging, and stimulating for a diverse population of students.
�e ECS curriculum is composed of activities that are designed to
engage students in computer science inquiry around meaningful
problems; the ECS professional development program is designed
to prepare teachers to implement these inquiry-based activities
while also guiding teachers in building a classroom culture that’s
culturally relevant and inclusive of all students.

When computer science is not taught for deep engagement, but
rather as an abstract academic subject, it privileges access to mostly
Caucasian, male students [14]. To play an integral role in such

classrooms, students must master abstract programming for pro-
gramming’s sake. In contrast, the ECS curriculum is designed to
engender deep engagement with important computer science con-
cepts using important features of communities in which youths
participate outside the classroom. General technology use outside
of school by youths of all races and genders tends to revolve around
making social connections and working on practical problems [12].
As suggested by the research reviews cited above, reorienting com-
puter science instruction to focus on problem-solving experiences
that are meaningful to students has the potential to increase access
to computer science content. In addition, collaborative learning and
paired programming techniques create opportunities for students
to learn from each other.

At the core of ECS are a set of high-leverage teaching practices [9]
that support the three interwoven teaching strands of ECS: equity,
inquiry, and CS concepts. �e following high-leverage teaching
practices enable students to equitably participate in student-led
inquiry around important CS concepts: (a) provide a meaningful
context for learning; (b) sca�old the development of CS concepts;
(c) facilitate peer inquiry and collaboration; and (d) encourage mul-
tiple forms of expression [7, pp. 7–8]. Inclusiveness is supported
by focusing on ideas that are meaningful to students, and activities
in the curriculum provide space for teachers to incorporate stu-
dents’ background and culture. In addition, many activities focus
on real-life issues in the community; for example, students can
make games that communicate messages about healthy eating or
about the plight of undocumented students [15]. Resting on equity
are inquiry-based activities in which students are “expected and
encouraged to help de�ne the initial conditions of problems, utilize
their prior knowledge, work collaboratively, make claims using
their own words, and develop multiple representations of particular
solutions” [15]. By engaging students in equitable inquiry through
the �rst two strands, students gain access to the domain content of
computer science, the third strand.

1.2 Computer Science Content in ECS
For this study, we will use the context of ECS to investigate whether
the ECS problem-solving approach correlates with the development
of programming expertise. We will also contribute to the literature
by engaging in a large-scale, systematic study of ECS implementa-
tion. We focused on the development of programming expertise in
the context of students in the Chicago Public Schools (CPS) who are
participating in an ECS course. CPS is the �rst school district in the
United States to enact computer science as a high school gradua-
tion requirement. ECS is a primary course through which students
ful�ll the requirement. �is research has been conducted in the
context of the Chicago Alliance For Equity in Computer Science
(CAFÉCS), which is an ongoing researcher-practitioner partnership
between CPS, �e Learning Partnership, DePaul University, Loyola
University, and the University of Illinois at Chicago [3, 4]. (Some
important prior research results produced by the alliance report
on the impact of the ECS course on students’ a�itudes towards
computer science [2], students’ choices about future CS course-
work [16], and students’ development of computational thinking
practices [17].)
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As recommended by the research review of Robins and col-
leagues [22], the ECS course �rst introduces students to general
problem solving that is abstracted from any speci�c language. In
the subsequent unit on programming, the ECS sequence gener-
ally follows the ‘chain of cognitive accomplishments,’ involving
three general phases as described by Linn and Dalbey [13]. (a)
Students �rst develop comprehension of speci�c language features
by studying their usage within speci�c case examples. For exam-
ple, to investigate the concept of conditionals, the teacher engages
students in a game of asking them to stand up if something is true,
such as if a student is a girl AND wearing a blue shirt. Students
are able to develop an appreciation of the feature of a language
before engaging in the syntax of a language. (b) Next, the students
focus on planning solutions through problem solving scenarios.
For example, students apply their knowledge of conditionals to
develop a Rock, Paper, Scissors game. �ey use pseudocode to plan
out the possible winning scenarios based on combinations of rock,
paper, and scissors. (c) Lastly, the programming unit culminates
in students generating code to develop a programming project of
their own choosing. �e students de�ne the problem, plan out a
solution, and then use the features of the programming language
to implement their solution.

�e development of expertise in comprehending programs, plan-
ning, and generation of programs has been studied in the liter-
ature [22]. �e bulk of this research focused on comprehension
of programs — examining the extent to which students demon-
strate understanding of an existing program. Research on planning
highlights the need for students to organize their thinking prior to
translating program speci�cations into program code. Less research
has been done on program generation in which students create part
of or a whole program to meet a set of criteria.

�ese “cognitive aspects of children and novices learning com-
putational concepts were studied extensively in the 1980s” [10, p.
42] but have received less a�ention since then [10]. Research on
planning has shown that students generally spend very li�le time
planning, which suggests a need to focus explicitly on supporting
students’ planning e�orts. Students are able to reason about surface
features of a problem, but have di�culty envisioning the unknowns
of given problems. In the area of program generation, research has
shown that students have particular di�culty with conditionals
and loops [18, 21]. In general, educators need to be realistic about
what can be accomplished within an introductory CS course.

2 MEASUREMENT OF PROGRAMMING
EXPERTISE

To measure the development of programming expertise, we used
assessments that were aligned to the computational thinking con-
cepts in ECS [6]. �e assessments were developed and �eld tested
by SRI International over two years using Evidence-Centered De-
sign (ECD), an assessment methodology that is especially advan-
tageous when the knowledge and skills to be measured involve
complex, multistep performances. �e ECD process involved (1)
working with various stakeholders to identify the important com-
puter science skills to measure, (2) mapping those skills to a model
of evidence that can support inferences about those skills, and (3)
developing tasks that elicit that evidence. �e assessments were

�eld tested with 941 students over two years [6]. Separate pretest
and pos�est forms were created. �e pretest contains six tasks
that measure students’ initial understanding of CS concepts and
computational thinking. Across the six tasks there are a total of 19
subtasks that are scored independently. �e pos�est contains �ve
tasks, two of which were on the pretest and three of which were
di�erent. �e two common tasks were used to equate the two forms
and allow for measurement of growth from pretest to pos�est. SRI
developed scoring rubrics with student work examples for each
of the tasks. Across all of the pretest and pos�est tasks, there are
a total of 30 question prompts that are each scored individually.
�e assessments and scoring rubrics can be accessed from the SRI
assessment website [11]

A subset of the tasks were used for this analysis to examine
the development of student expertise in comprehension, planning,
and generation. In keeping with the recommendation of being
realistic about the expectations for students, the assessment tasks
targeted narrow aspects of each ability that were aligned with the
expectations of the ECS curriculum.

Within program comprehension, there were two tasks that were
assessed. First students were provided with a wri�en algorithm.
�ey were given an input value and asked to determine what the
program output would be. Next students were given a scenario in
which three drivers with cars needed to pick up 12 passengers for
a concert and no more than �ve people could be in one car. Given
an approach to e�ciently picking up the passengers, students need
to determine whether the algorithm will meet the criteria.

Under planning, students used the same driver and passenger
scenario. �ey were asked to determine which inputs were provided
in the scenario and which important inputs were not provided in
the scenario. In a separate task, students were asked to provide
requirements for a program that would help a teacher track student
information.

For program generation, students were provided with an algo-
rithm that is abstracted from any given language. �ey are then
asked to decide which step in the algorithm would use a Scratch
conditional block and which step would use a Repeat-Until Loop.
Based on the chain of cognitive accomplishments cited above, we
hypothesized that comprehension would be the least complex, fol-
lowed by planning and then generation. As discussed below, this
hypothesis about levels of complexity of the tasks was tested using
the Rasch scaling method to estimate the relative level of di�culty
of each set of tasks.

3 METHODS
�is study was undertaken by CAFÉCS in the context of the imple-
mentation of ECS in CPS. �ere were 90 teachers who taught an
ECS course during the 2016–17 school year to 6,425 students. �e
school district invited all of the teachers to administer the pretests
at the beginning of the school year and the pos�ests at the end
of the school year. �ere were 28 teachers with 1,931 students
who administered both the pretests and pos�ests to their students.
�ese teachers and their students were included in the study. �e
remaining ECS teachers were dropped from the study since they
provided only partial data or no data.
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Table 1: Demographic characteristics of ECS research par-
ticipants in comparison to non-research ECS students and
all district high school students. An asterisk in the research
sample column indicates that value is statistically signi�-
cantly di�erent from the ECS sample.

Characteristics District Other ECS
Research
Sample

Number of students 109,053 4494 1931
Female — 45% 42%
Caucasian 8% 12% 15%∗
African-American 40% 29% 20%∗
Hispanic 46% 46% 58%∗
Asian 4% 8% 5%
Low Income 83% 86% 82%∗
Special Ed 16% 13% 14%
ESL 8% 9% 9%
Freshman 25% 66% 71%∗
A�endance 88% 92% 91%
GPA — 2.7 2.7

Table 1 shows the demographic characteristics of the students
who were included in the study, and, for comparison, the demo-
graphic characteristics of the remaining ECS students as well as
the total district high school population. Statistical comparisons of
each demographic characteristic were conducted between the ECS
research participants and ECS non-participants. Asterisks indicate
those demographic characteristics in which there was a statisti-
cally signi�cant di�erence between the research participants and
non-participants.

In general, there were fewer females than males who completed
the ECS course, but there was no statistical di�erence between
research participants and non-participants. �e largest racial demo-
graphic group in ECS were Hispanic students followed by African-
American students. In the research sample, there was a larger per-
centage of Hispanic and Caucasian students and a lower percentage
of African-American students than the non-research participants.
�e research population had a lower percentage of low-income stu-
dents. �e proportion of special education, and English language
learners was similar as was the rates of a�endance and the overall
GPA. Given the large sample size, there were su�cient numbers
of students in each demographic category to be able to investigate
di�erences in outcomes based on gender and race/ethnicity.

3.1 ECS Professional Development
Curriculum materials and activities represent one component of the
ECS program. Implementation of ECS was supported by a robust
professional development program. Given the signi�cant shi� in
the nature of computer science teaching required for successful
implementation of ECS, teachers need extended professional devel-
opment to successfully adapt to the ECS model of teaching [8]. �e
ECS PD program is intentionally designed to prepare teachers to
implement the inquiry-based activities while also guiding them to
build a classroom culture that is inclusive of all students [8]. Pro-
fessional development begins with a weeklong summer workshop

prior to implementing ECS. �ere are �ve key components of the
ECS professional development model, the �rst being that teachers
engage in the process of collaborative inquiry in small groups in
the same way that students will engage in inquiry. �e second
component is that, throughout the �rst week, teachers participate
in inquiry speci�cally through a teacher-learner-observer model.
Each small group is assigned a lesson in which the group co-plans
and teaches the lesson to the rest of the participants, who experi-
ence the lesson as learners. A�er the lesson, all the participants
engage in re�ective discussion about the experience from the point
of view of the three ECS teaching strands (equity, inquiry, and CS
content). �ese �rst two components of ECS professional develop-
ment are consistent with what Desimone and Garet [1] call active
learning in professional development. �eir review of professional
development found that active learning was an important com-
ponent of professional development as it signi�cantly in�uenced
changes in teacher practices.

�e third component of ECS professional development is explicit
discussion and re�ection on equitable practices. During the work-
shop, the teachers read sections of Stuck in the Shallow End [14],
which provides rich case study descriptions of the roots of inequity
in computer science. �e fourth and ��h components of ECS PD
are meant to sustain teacher development over long time spans,
which is another key dimension of e�ective PD [1]. �e fourth
component is ongoing professional development during the school
year and a second weeklong workshop the summer a�er their �rst
year of implementation. �e ��h component of ECS PD is the
development of a professional learning community. It begins in
the summer workshop through the formation of small groups that
engage in collaborative inquiry. It is also built up through the trust
that teachers develop as they engage in tough, open discussions
about equity as well as through open, honest feedback on lesson
design and implementation during the workshops.

3.2 Assessments
During the 2016–17 school year, teachers administered the SRI-
developed ECS pretest at the beginning of the year and the pos�est
at the end of the year. SRI has developed rubrics for each of the
assessment tasks. �ese rubrics are designed for classroom teachers
to grade their students’ assessments. SRI reports that it takes teach-
ers about 5 minutes per student to score the assessments. In order to
aggregate assessment result across teachers, we used independent
scorers to grade the assessments.

We hired �e Graide Network to score the pretests and pos�ests.
�e Graide Network recruited and trained 26 undergraduate pre-
service teachers to score the performances tasks. �e scorers were
provided training on each of the rubrics prior to scoring. As part
of the training, each scorer scored a common set of 80 pretest re-
sponses from each question prompt in order to equate the severity of
the scorers. For the pos�est, we had overlapping subsets of scorers
rate the same students. We used the Facets so�ware version 3.71.4
to conduct Many-Facet Rasch Measurement analysis (MFRM) [5] to
scale the student responses at each administration. Facets develops
a model based on how well the student performed across the range
of question prompts with set di�culties taking into account the
severity of the scorer relative to the other scorers. Within MFRM,
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the goal is not for scorers to arrive at agreement on the scores, but
instead to model the variation in how the scorers interpreted the
rubrics. As long as the raters are internally consistent in how they
apply the rubric, Facets can adjust the students’ scores based on
the severity or leniency of the scores relative to other scorers. We
used the pretest tasks as the benchmark for scaling item di�culty.
For scaling of the pos�est scores, the item di�culties of the two
common tasks were �xed based on the pretest scales. �e overall
model �t of the students, tasks, and scorers at each administration
was high. For ease of interpretation, the logit scale produced by
Facets was converted to a scale ranging from 0 to 25.

4 RESULTS
To set the context for investigating the development of speci�c as-
pects of programming expertise, we �rst examine the overall pretest
to pos�est performance as well as examine the extent to which
students’ performance in the course predicts pos�est performance.

In the �rst model we test the growth of computational thinking
from pretest to pos�est. �e average pretest score was 11.7 out of
25 and the average pos�est score was 13.8 for a growth of more
than two points. We used a paired t-test to determine that this
growth was statistically signi�cant (t(1930)=24.5, p < 0.001) with
a medium e�ect size of 0.6 standard deviations, adjusted for the
correlation between the pretest and pos�est.

In the second model, we investigated the extent to which stu-
dents’ course performance correlates with the development of com-
putational thinking a�er controlling for student characteristics.
Since students were nested within teachers, we conducted hierar-
chical linear modeling (HLM) on the pos�est performance using
WHLM so�ware version 7.24q. �ere are two levels to the HLM
model (see Figure 1 for the HLM equation). Given that students
of a particular teacher have a shared experience, the HLM analy-
ses account for this shared variance of students within a class by
developing a linear model of each student characteristic for the
population of students of a given teacher. HLM then aggregates
the intercepts and slopes across all of the teachers to model the
relationships of each variable to the pos�est performance.

At the �rst level are the student characteristics, which include
each student’s pretest score, grade level, gender (female), race
(African American or Hispanic versus other races), participation in
special education, participation in free or reduced lunch program
(FRL), which serves as an indicator of low-income status, partic-
ipation in the English language learning program (ELL), annual
a�endance rate, cumulative GPA in the year in which the student
completed ECS, and grade the student received in the ECS course.
�e pretest score, a�endance, cumulative GPA, and ECS course
grade are group mean centered. �e level 1 random e�ect is rep-
resented by ri j . At the second level are the teachers. �ere are no
teacher characteristics included in the model. �e pretest score
coe�cient and ECS course grade coe�cient are random e�ects,
represented as u1j and u11j , respectively. �ese random e�ects
allow the slopes of the two coe�cients to vary across teachers at
level 2. All of the other factors are �xed e�ects. A�er controlling
for student characteristics, the HLM analyses provide evidence on
the extent to which performance in the ECS course correlated with
performance on the pos�est.

We used students’ course grades as an indicator of course per-
formance. In addition, we examined whether there were di�er-
ences in pos�est performance by students of di�erent gender and
racial/ethnic backgrounds. Table 2 shows the results of the analysis.
A�er controlling for pretest performance, there were no statis-
tically signi�cant di�erences in pos�est performance by gender,
race/ethnicity or level of family income. �ere were statistically
signi�cant negative di�erences in pos�est performance for ELL
and special education students. A�er also controlling for students’
overall academic performance as measured by their GPA as well as
their school a�endance, how well students performed in the course
had a statistically signi�cant correlation with pos�est performance.

5 DISCUSSION
Given that students signi�cantly increased their overall perfor-
mance from pretest to pos�est and their pos�est performance was
correlated with performance in the ECS course a�er controlling
for demographic and other behavioral characteristics, we can now
examine the results of students’ performance on the speci�c set
of programming tasks on the pos�est assessment. �e process
of Rasch scaling provides an estimate of each student’s cognitive
ability related to the computer science concepts within ECS as mea-
sured by the assessments. In addition, the process of Rasch scaling
provides an estimate of the di�culty of each task for the population
of assessment takers. In the Rasch context, a student is considered
competent at a task if the student’s ability is greater than or equal to
the di�culty of the task. Table 3 shows the percentage of students
at pretest and pos�est whose estimated Rasch ability level is greater
than or equal to the level of di�culty of the tasks in each category
of programming competency.

Across all categories, there were more students who achieved
competency at pos�est than at pretest. Generally the tasks related
to comprehension and planning were easier than the tasks related
to program generation as indicated by the fact that there is a higher
percentage of students whose ability level is greater than or equal to
the di�culty level of those tasks. �ese results are consistent with
the ‘chain of cognitive accomplishments,’ in which tasks related
to language features and planning are easier than tasks related
to program generation. In addition, tasks that were concrete in
nature were generally easier with most students demonstrating
competency by pos�est. �ese tasks include determining the output
from a wri�en algorithm, identifying the available inputs from a
problem scenario, and deciding the general requirements for a
teacher’s program to track student information. Tasks that were
more abstract in nature were generally more di�cult, with less
than half of the students demonstrating competency on those tasks.
�ese tasks include testing an algorithm against the speci�cations,
identifying inputs that are not given in the problem scenario, and
use of loops and conditionals.

6 CONCLUSIONS
School districts across the United States are responding to the call
to increase access to computer science for all high school students.
It is important for school districts to be mindful of the research
on e�ective practices for the development of computer science
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POSTTESTi j = γ00 + γ10 ∗ PRETESTi j + γ20 ∗ FEMALEi j + γ30 ∗GRADE LEVELi j + γ40 ∗ HISPANICi j

+γ50 ∗AFRICAN −AMERICANi j + γ60 ∗ IS SPECIAL EDi j + γ70 ∗ IS FRLi j + γ80 ∗ IS ELLi j + γ90 ∗ATTENDANCEi j

+γ100 ∗GPAi j + γ110 ∗ ECS GRADEi j + u0j + u1j ∗ PRETESTi j + u11j ∗ ECS GRADEi j + ri j

Figure 1: HLM model equation.

Table 2: HLM Model results for the student posttest scores by student characteristics. �e factors in bold are statistically
signi�cant.

Characteristic Coe�cient
Standard

Error t-ratio p-value
Average 14.74 1.0 t (27) = 14.69 p < 0.001
Student Characteristics

Pretest 0.15 0.03 t (27) = 4.97 p < 0.001
Grade Level −0.08 0.09 t (221) = −0.83 p = 0.407
Female −0.17 0.13 t (252) = −1.34 p = 0.181
Hispanic 0.26 0.18 t (183) = 1.44 p = 0.151
African-American −0.25 0.23 t (287) = −1.08 p = 0.283
Free or Reduced Lunch −0.04 0.09 t (177) = −0.51 p = 0.611
ESL −0.66 0.24 t (106) = −2.78 p = 0.007
Special Education −1.05 0.18 t (628) = −5.68 p < 0.001
Rate of Attendance −2.59 0.89 t (39) = −2.95 p = 0.005
Cummulative GPA 0.72 0.15 t (61) = 4.70 p < 0.001
ECS Course Grade 0.26 0.13 t (27) = 2.04 p = 0.051

Table 3: Percentage of students demonstrating competency
on each dimension of programming expertise at pretest and
posttest.

Problem type Pretest Posttest

Comprehension
Determine Output 62% 87%
Will Output Meet Requirement? 14% 34%

Planning
Available Inputs 46% 78%
Generate Requirements 38% 69%
Missing Inputs 20% 45%

Generation
Conditional 22% 48%
Loop 7% 21%

expertise as well as research on se�ing reasonable expectations for
student development of expertise.

In this research, we examined the impact of ECS on the devel-
opment of programming expertise in the context of a large-scale
implementation. ECS is a prominent high school introductory com-
pute science course that is closely aligned to e�ective pedagogical
practices that have theoretical and empirical support. A primary
goal of the ECS curriculum and professional development program
is to contribute to broadened participation of women and minori-
ties and increased equity in the �eld of computer science. �e
curriculum is composed of activities that are designed to engage
students in computer science inquiry around meaningful problems

in the context of a classroom culture that’s culturally relevant and
inclusive of all students.

We conducted a large-scale, systematic study, as recommended
in the literature [20], to examine whether a curriculum that uses
a problem solving approach can support the development of pro-
gramming expertise. Overall, students achieved medium-sized, sta-
tistically signi�cant learning gains from pretest to pos�est and
those learning gains were spread equitably across gender and
race/ethnicity. �ese learning gains were correlated with students’
academic performance in the course a�er controlling for students’
prior academic performance. �ese results provide evidence that
a problem solving approach can support the development of pro-
gramming expertise.

�ese results also provide evidence on the progression of the
development of programming expertise. Students seem to develop
comprehension and planning expertise prior to expertise in pro-
gram generation. In addition, students seem to develop expertise
with concrete tasks prior to abstract tasks. �ese results provide
evidence for the current sequencing of activities in ECS that are
consistent with the ‘chain of cognitive accomplishments’ approach.
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